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1. Introduction

The determination of QCD pressure up to order g6 is a long-standing problem in finite-

temperature field theory [1 – 3]. This is the first order where a coefficient of the weak-

coupling expansion, due to infrared divergences, gets contributions from an infinite number

of loop-diagrams and thus is non-perturbative.

However, at high enough temperatures (T & 2Tc) the properties of finite-temperature

QCD can be described by dimensionally reduced effective field theory methods [4, 5]. By

integrating out temporal degrees of freedom a three-dimensional pure gauge theory, called

magnetostatic QCD (MQCD), is constructed. This allows us to isolate all the divergences

to MQCD and study it using lattice calculations. The integration out is most conveniently

performed perturbatively in MS scheme [6].

We can relate any lattice regularized quantities within MQCD to the continuum scheme

(MS), because MQCD is super-renormalizable. There are ultraviolet divergences up to 4-

loop level only [7]. Terms required in the conversion have been determined up to 3-loop

level [8, 9]. Infrared divergences cause an additional complication in the 4-loop level. The

computation requires an introduction of an IR cutoff, which then cancels once lattice and

MS results are subtracted. This computation has been carried out recently for Nc = 3

in [10] using stochastic perturbation theory.

In [11] the plaquette expectation value, which determines the non-perturbative con-

tribution, was measured for Nc = 3. The purpose of this paper is to extend the results

to study the Nc-dependence of this observable. We carry out lattice measurements of the

plaquette with Nc = 2, 3, 4, 5 and 8 to obtain the Nc-dependence. We also get an indepen-

dent approximation for the Nc = 3 result. This acts as a consistency check for the whole

pressure calculation. Namely, we expect to see smooth Nc-dependence in the observable.

– 1 –



J
H
E
P
1
1
(
2
0
0
6
)
0
6
0

Additionally, there are various other physical motivations to study the Nc-dependence

and especially the large-Nc limit of SU(Nc) gauge theories [12]. The limit Nc → ∞ simpli-

fies the theory significantly, but nevertheless the phenomenology is in many ways similar to

SU(3). These reasons have motivated numerous large-Nc limit studies on the lattice [13, 14].

The paper is organized as follows. In section 2, we give the theoretical background of

our study and specify the observable we consider. In section 3 we present the numerical

results of lattice Monte Carlo simulations. Conclusions are given in section 4.

2. Theoretical setup

The ultimate interest of our study is Euclidean pure SU(Nc) Yang-Mills theory, defined in

continuum dimensional regularization by

SE =

∫

ddxLE, LE =
1

2g2
3

∑

k,l

Tr[F 2
kl], (2.1)

where d = 3− 2ε, g2
3 is the gauge coupling, k, l = 1, . . . , d, Fkl = i[Dk,Dl], Dk = ∂k − iAk,

Ak = Aa
kT

a, and T a are Hermitean generators of SU(Nc) normalized such that Tr[T aT b] =

δab/2. The vacuum energy density in MS (suppressing Faddev-Popov and gauge fixing

terms) is defined by

f
MS

≡ − lim
V →∞

1

V
ln

[
∫

DAk exp (−SE)

]

MS

, (2.2)

where V denotes the d-dimensional volume. The use of the MS dimensional regularization

scheme removes any 1/ε poles from the expression. In fact, using dimensional regularization

the perturbative result vanishes, because there are no mass scales in the propagators and

therefore the UV and IR divergences cancel each other. However, for dimensional reasons,

the non-perturbative form of the free energy is

f
MS

= g6
3

[

A′
G ln

µ̄

g2
3

+ B′
G

]

, (2.3)

where µ̄ is the MS renormalization scheme scale parameter. The coefficient of the logarithm

has been calculated by introducing a mass scale m2
G

for gluon and ghost propagators and

sending m2
G
→ 0 after the computation [3, 15]:

f
MS

= −g6
3

dAN3
c

(4π)4

[(

43

12
−

157

768
π2

)

ln
µ̄

2Ncg2
3

+ BG(Nc) + O(ε)

]

, (2.4)

where dA = N2
c − 1. The non-perturbative constant part BG, which is a function of the

number of colors, is what one would ultimately like to determine.

Using standard Wilson discretization, we can write the corresponding action on the

lattice as

Sa = β
∑

x

3
∑

k<l

(

1 −
1

Nc

ReTr[Pkl(x)]

)

, (2.5)
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where Pkl is the plaquette, a is the lattice spacing and β ≡ 2Nc/(ag2
3). Hence the continuum

limit is taken by β → ∞. Analogously to MS, the free energy density is defined on the

lattice as

fa ≡ − lim
V →∞

1

V
ln

[
∫

DUk exp (−Sa)

]

. (2.6)

Dimensionally, the vacuum energy density consists of terms of the form g2n
3

an−3. Thus,

approaching the continuum limit, we can relate fa and f
MS

as follows:

∆f ≡ fa − f
MS

(2.7)

= C1

1

a3

(

ln
1

ag2
3

+ C ′
1

)

+ C2

g2
3

a2
+ C3

g4
3

a
+ C4g

6
3

(

ln
1

aµ̄
+ C ′

4

)

+ O(g8
3a). (2.8)

Taking derivatives of eq. (2.7) with respect to g2
3 and using 3d rotational and transla-

tional symmetries on the lattice, we obtain the relation [11]

8
dAN6

c

(4π)4
BG(Nc) = lim

β→∞
β4

{

〈1 −
1

Nc

Tr[P ]〉a −

[

c1

β
+

c2

β2
+

c3

β3
+

c4

β4
(ln β + c′4)

]}

. (2.9)

The relations between ci and Ci are

c1 = C1/3 c2 = −
2Nc

3
C2 c3 = −

8N2
c

3
C3

c4 = −8N3
c C4 c′4 = C ′

4 −
1

3
− 2 ln(2Nc). (2.10)

The first follows from a straightforward 1-loop computation:

c1 =
dA

3
. (2.11)

The 2-loop constant has been computed in three dimensions in [16] and can be written as

c2 = −
2

3

dAN2
c

(4π)2

(

4π2

3N2
c

+
Σ2

4
− πΣ −

π2

2
+ 4κ1 +

2

3
κ5

)

(2.12)

= dAN2
c

(

0.03327444(8) −
1

18

1

N2
c

)

, (2.13)

where the coefficients Σ, κ1 and κ5 can be found in [7, 17]. The 3-loop term has been

computed in three dimensions recently in ref. [9]:

c3 = dAN4
c

(

0.0147397(3) − 0.04289464(7)
1

N2
c

+ 0.04978944(1)
1

N4
c

)

. (2.14)

Because there is no µ̄ dependence in fa, the value of c4 is determined by f
MS

,

c4 = 0.000502301323dAN6
c . (2.15)

The four-loop free energy itself is an IR divergent quantity at in both MS and lattice

schemes. But the finite difference between them, c′
4
, can be defined by introducing the

same IR cutoff, e.g. a gluon mass, to both schemes. The cutoff dependence then cancels

– 3 –
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out when the two schemes are compared. At present c′4 is known only for Nc = 3, for which

it has been calculated using stochastic perturbation theory [10].

For later use we define the quantity

PG(β,Nc) ≡
32π4β4

dAN6
c

{

〈1 −
1

Nc

Tr[P ]〉a −

[

c1

β
+

c2

β2
+

c3

β3
+

c4

β4
lnβ

]}

, (2.16)

which is a normalized plaquette expectation value minus all the ultraviolet divergences.

Hence,

BG(Nc) −

(

43

12
−

157

768
π2

)

c′4 = PG(∞, Nc). (2.17)

Our goal here is to determine PG(∞, Nc). After the Nc-dependence of c′4 has been deter-

mined by, e.g., stochastic perturbation theory, one has reached the final goal, the determi-

nation of BG(Nc).

3. Lattice computations

The simulations were performed using Kennedy-Pendleton quasi heat bath (HB) [18] and

overrelaxation (OR) algorithms. For the overrelaxation we used an algorithm which up-

dates the whole matrix using singular value decomposition and performs very well for large

Nc [19]. Lattices of size N3, N = 24, . . . , 400 were used.

For each HB update we performed one OR. The number of updated subgroups in

HB for Nc = 3, 4, 5 and 8 were 3, 4, 8 and 24, respectively. These subgroups were

chosen randomly for each update. After each of these cycles we measured the value of

the plaquette. The integrated autocorrelation times were around 0.75. For SU(2) we used

dedicated OR and HB algorithms, with a ratio of one OR step for each HB update. The

autocorrelation time was around 0.6. The data sets used for SU(3) are the same as in [11].

The contribution of BG to the plaquette expectation value in eq. (2.9) is about five

orders of magnitude smaller than the leading order contribution. Thus we experience mas-

sive significance loss in the subtraction and the accuracy requirement makes the numerical

computation demanding (figure 1).

The only physical scale in this problem is the correlation length of the lightest glueball,

which according to [20] is ∼ 1/Ncg
2
3 . The requirement, that this scale be in the reach of

the lattice gives us the condition

a ¿
1

g2
3
Nc

¿ Na, (3.1)

which translates into

2N2
c ¿ β ¿ 2N2

c N. (3.2)

Systematic errors due to the finite-volume effects turn out to be well under control.

Because the theory is confining, we expect finite-volume effects to be exponentially sup-

pressed when the condition (3.2) is fulfilled. As seen in figure 2, the finite-volume effects

are no longer visible within our resolution when β . 0.2N2
c N .
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Figure 1: The significance loss due to the subtraction of ultraviolet divergences in the plaquette

expectation value with different Nc. Here “plaq”≡ 〈1 − 1

Nc

Tr[P ]〉 and the symbols ci in curly

brackets represent which subtractions of eq. (2.9) have been taken into account.

0 0.1 0.2 0.3

 β/(NN
c

2
)

0

2

4

6

8

10

12

14

16

18

20

P
G

(β
,N

c)

SU(2),  β=16
SU(3),  β=32
SU(4),  β=64
SU(5),  β=100
SU(8),  β=240

N
c
=8

N
c
=5

N
c
=4

N
c
=3

N
c
=2

Figure 2: PG(β, Nc) as a function of the physical lattice size β/(NN2

c
). Points denoted by open

symbols are relatively low-statistics small volume simulations, included in order to illustrate the

exponentially suppressed finite volume effects. These are omitted in the extrapolation. Finite-

volume effects become visible when β/(NN2

c
) ∼ 0.2. The points on the vertical axis indicate the

infinite-volume estimate, obtained by fitting a constant to data in the range β/(NN2

c
) < 0.1.

In figure 3 the effects arising from finite lattice spacing can be seen. We experience

a qualitative change in the behavior of the plaquette expectation value at β ≈ N2
c . The

plaquette expectation value as a function of volume and lattice spacing a is consistent with

the assumption of correlation lengths being ∼ N2
c /β.
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Figure 3: The solid line indicates the continuum extrapolation obtained by fitting a second order

polynomial to the infinite-volume extrapolated data. Points denoted by lighter color are omitted.

The bulk phase transition point is around N2

c
/β ∼ 0.9.

After numerous test runs we use in our simulations the requirement

N2
c < β . N(Nc/3)

2, (3.3)

which is also the case in [11].

The continuum extrapolation is obtained by fitting a polynomial PG(Nc) = d1+d2/β+

d3β
2 to the infinite-volume extrapolated data in figure 4 for each Nc separately. This func-

tional form describes data quite well. The χ2/dof values for Nc = 2, 3, 5 are excellent but

slightly discouraging for Nc = 4, 8. The fitted values are show in table 1. Using only

statistical errors of the fitting parameters would underestimate the uncertainties of the

continuum values, because the fit is dominated by points far from the continuum limit.

Inclusion of higher order terms to the fitting function changes the continuum extrapola-

tions by about one sigma. Therefore we expect that the 1-sigma error of the continuum

extrapolated value is comparable to 2-sigma error of the fitting parameter d1.

At the leading order in Nc, our measurements agree with the prediction of planar

diagram theory with PG(Nc,∞), approaching a constant (figure 5). To study the next

order contributions we fit polynomials b1 + b2/Nc, b1 + b2/Nc + b3/N
2
c and b1 + b3/N

2
c to

the continuum extrapolated data in figure 6. We find that two last forms fit the data quite

well. The b2 coefficient is zero (within our resolution) as could be expected from the form

of the perturbative coefficients,1 which are also functions of N2
c . The data is not accurate

1Note, however, that terms ∼ 1/Nc appear to be possible in certain other pure gauge theory observ-

ables [14].
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Figure 4: Continuum extrapolations of infinite-volume extrapolated data for each Nc.

Nc fit χ2/dof PG(∞, Nc)

2 5.09(15) + 16(3)β−1 + 3(11)β−2 5.1/6 5.1(3)

3 10.7(2) + 46(7)β−1 + 4.85(6) × 102β−2 5.8/6 10.7(4)

4 13.38(13) + 1.05(9) × 102β−1 + 2.58(14) × 103β−2 12.3/5 13.4(3)

5 14.8(2) + 1.8(2) × 102β−1 + 7.9(5) × 103β−2 7.7/4 14.8(4)

8 14.7(2) + 7.7(5) × 102β−1 + 5.3(3) × 104β−2 17.7/4 14.7(4)

Table 1: The fitted values and χ2/dof of continuum extrapolations for each Nc. The value in the

brackets indicates the uncertainty of the last digit. The last column indicates the continuum limit

with systematic errors included.

enough to determine higher order terms.

As our final results we quote

BG(Nc) +

(

43

12
−

157

768
π2

)

c′4 = PG(∞, Nc) = 15.9(2) − 44(2)/N2
c (3.4)

Inserting Nc = 3 we get

BG(3) +

(

43

12
−

157

768
π2

)

c′4 = 11.0 ± 0.3, (3.5)

which is consistent with the direct determination 10.7 ± 0.4 [11].

4. Conclusions

The purpose of this paper has been to measure the Nc-dependence of the expectation

value of the plaquette in three-dimensional pure gauge theory. We have also outlined how

– 7 –
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theory, PG approaches a constant in the large-Nc limit.
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Figure 6: Comparing different fits for higher order terms in Nc. The term N−1

c
is zero within our

resolution implying that PG is a function of N−2

c
.

the continuum MS scheme free energy can be extracted from it. High precision lattice

measurements of plaquette were performed with Nc = 2, 3, 4, 5 and 8 and the large-Nc

limit was taken by extrapolation. We found that the non-perturbative input is PG =

15.9(2) − 44(2)/N2
c . The data does not seem to allow for terms ∼ 1/Nc, and higher order
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function values χ2/dof

b1 + b2N
−1
c 20.0(4) − 28.9(12)N−1

c 27.9/3

b1 + b2N
−1
c + b3N

−2
c 15.25(11) + 4.8(7)N−1

c − 50.5(11)N−2
c 4.9/2

b1 + b3N
−2
c 15.9(2) − 43.5(17)N−2

c 5.4/3

Table 2: Different fitting functions for PG(∞, Nc). The term N−1

c
provides a very bad description

of the data (1st case) or has a coefficient consistent with zero within our resolution (2nd case); see

also figure 6. The confidence values of fits are plausible for the last two functions.

terms, O(1/N3
c ) or O(1/N4

c ), are small enough such that the physical case Nc = 3 is very

well described by this form.
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J
H
E
P
1
1
(
2
0
0
6
)
0
6
0

SU(2)

β volume Nind 〈1 − 1

Nc
Tr[P ]〉a

6 483 40719 0.1752161(16)

7 483 42164 0.1488698(13)

9 483 43187 0.1145493(10)

9 3203 5104 0.11454906(17)

11 483 42993 0.0931322(8)

11 3203 8463 0.09313207(11)

13 483 44195 0.0784776(7)

13 3203 8024 0.07847755(9)

16 643 157777 0.06350205(19)

16 3203 14881 0.06350198(5)

20 643 271054 0.05062861(11)

20 3203 12613 0.05062829(5)

24 483 904993 0.04209730(8)

24 643 317058 0.04209720(9)

24 3203 14961 0.04209733(4)

32 643 868436 0.03148821(4)

32 3203 15064 0.03148828(2)

32 4003 6193 0.03148828(3)

SU(3)

β volume Nind 〈1 − 1

Nc
Tr[P ]〉a

12 243 13459 0.2417125(8)

12 323 10309 0.241717(6)

12 483 16236 0.241714(3)

16 243 15337 0.176526(6)

16 323 18668 0.176531(3)

16 483 19076 0.1765290(17)

16 643 11833 0.1765302(14)

20 243 11484 0.139295(5)

20 323 11634 0.139283(3)

20 483 19814 0.1392932(13)

24 243 15992 0.115100(3)

24 323 20983 0.1151000(19)

24 483 20723 0.1150986(11)

24 643 12101 0.1151009(9)

32 483 20451 0.0854789(8)

32 643 24662 0.0854815(5)

32 963 24875 0.0854806(3)

40 483 20817 0.0680065(6)

40 643 25442 0.0680058(4)

40 963 25700 0.06800677(19)

50 643 33448 0.0541741(3)

50 963 69213 0.05417428(10)

50 1283 29261 0.05417418(10)

50 3203 8298 0.05417406(5)

64 963 25211 0.04217128(12)

64 1283 35565 0.04217113(6)

64 3203 7921 0.04217123(4)

80 1283 34310 0.03365240(6)

80 3203 8356 0.03365247(3)
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J
H
E
P
1
1
(
2
0
0
6
)
0
6
0

SU(4)

β volume Nind 〈1 − 1

Nc
Tr[P ]〉a

24 483 79254 0.2257701(7)

24 643 15474 0.2257703(10)

32 483 58752 0.1651322(6)

32 643 16039 0.1651320(7)

40 643 16704 0.1303851(5)

40 963 33574 0.1303857(2)

40 1283 32872 0.13038581(13)

50 643 17257 0.1033093(4)

50 963 34295 0.10330876(16)

50 1283 33813 0.10330879(10)

58 963 34810 0.08861313(14)

58 1283 33443 0.08861289(9)

64 963 17342 0.08007684(17)

64 1283 50908 0.08007682(6)

80 1283 50664 0.06372001(5)

100 1283 51510 0.05076660(4)

SU(5)

β volume Nind 〈1 − 1

Nc
Tr[P ]〉a

40 1283 4667 0.2161236(5)

58 1283 8515 0.1447591(2)

64 1283 27137 0.13048507(12)

80 1283 22616 0.10336875(10)

100 1283 20238 0.08208926(8)

140 1283 12886 0.05817279(8)

140 1603 16049 0.05817267(5)

180 1283 12184 0.04505589(6)

180 1603 8597 0.04505586(5)

SU(8)

β volume Nind 〈1 − 1

Nc
Tr[P ]〉a

100 963 6493 0.2285506(5)

140 963 9789 0.1584135(3)

180 963 7127 0.1214678(2)

180 1283 3522 0.1214678(2)

240 963 3755 0.0900746(3)

240 1283 3857 0.09007497(16)

300 963 11266 0.07160377(11)

300 1283 3831 0.07160353(13)

400 963 18120 0.05337892(6)

400 1283 4251 0.05337902(8)

460 1283 8656 0.04631022(5)
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